ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xchnxbir Structured version   GIF version

Theorem xchnxbir 605
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchnxbir.1 φψ)
xchnxbir.2 (χφ)
Assertion
Ref Expression
xchnxbir χψ)

Proof of Theorem xchnxbir
StepHypRef Expression
1 xchnxbir.1 . 2 φψ)
2 xchnxbir.2 . . 3 (χφ)
32bicomi 123 . 2 (φχ)
41, 3xchnxbi 604 1 χψ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  3ioran  899  truxortru  1307  truxorfal  1308  falxortru  1309  falxorfal  1310  nsspssun  3164  intirr  4654
  Copyright terms: Public domain W3C validator