Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  wetriext GIF version

Theorem wetriext 4301
 Description: A trichotomous well-order is extensional. (Contributed by Jim Kingdon, 26-Sep-2021.)
Hypotheses
Ref Expression
wetriext.we (𝜑𝑅 We 𝐴)
wetriext.a (𝜑𝐴𝑉)
wetriext.tri (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
wetriext.b (𝜑𝐵𝐴)
wetriext.c (𝜑𝐶𝐴)
wetriext.ext (𝜑 → ∀𝑧𝐴 (𝑧𝑅𝐵𝑧𝑅𝐶))
Assertion
Ref Expression
wetriext (𝜑𝐵 = 𝐶)
Distinct variable groups:   𝐴,𝑎,𝑏   𝑧,𝐴   𝐵,𝑎,𝑏   𝑧,𝐵   𝐶,𝑏   𝑧,𝐶   𝑅,𝑎,𝑏   𝑧,𝑅
Allowed substitution hints:   𝜑(𝑧,𝑎,𝑏)   𝐶(𝑎)   𝑉(𝑧,𝑎,𝑏)

Proof of Theorem wetriext
StepHypRef Expression
1 wetriext.b . . . . 5 (𝜑𝐵𝐴)
2 wetriext.ext . . . . 5 (𝜑 → ∀𝑧𝐴 (𝑧𝑅𝐵𝑧𝑅𝐶))
3 breq1 3767 . . . . . . 7 (𝑧 = 𝐵 → (𝑧𝑅𝐵𝐵𝑅𝐵))
4 breq1 3767 . . . . . . 7 (𝑧 = 𝐵 → (𝑧𝑅𝐶𝐵𝑅𝐶))
53, 4bibi12d 224 . . . . . 6 (𝑧 = 𝐵 → ((𝑧𝑅𝐵𝑧𝑅𝐶) ↔ (𝐵𝑅𝐵𝐵𝑅𝐶)))
65rspcv 2652 . . . . 5 (𝐵𝐴 → (∀𝑧𝐴 (𝑧𝑅𝐵𝑧𝑅𝐶) → (𝐵𝑅𝐵𝐵𝑅𝐶)))
71, 2, 6sylc 56 . . . 4 (𝜑 → (𝐵𝑅𝐵𝐵𝑅𝐶))
87biimpar 281 . . 3 ((𝜑𝐵𝑅𝐶) → 𝐵𝑅𝐵)
9 wetriext.we . . . . . 6 (𝜑𝑅 We 𝐴)
10 wefr 4095 . . . . . 6 (𝑅 We 𝐴𝑅 Fr 𝐴)
119, 10syl 14 . . . . 5 (𝜑𝑅 Fr 𝐴)
12 wetriext.a . . . . 5 (𝜑𝐴𝑉)
13 frirrg 4087 . . . . 5 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ¬ 𝐵𝑅𝐵)
1411, 12, 1, 13syl3anc 1135 . . . 4 (𝜑 → ¬ 𝐵𝑅𝐵)
1514adantr 261 . . 3 ((𝜑𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵)
168, 15pm2.21dd 550 . 2 ((𝜑𝐵𝑅𝐶) → 𝐵 = 𝐶)
17 simpr 103 . 2 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
18 wetriext.c . . . . 5 (𝜑𝐶𝐴)
19 breq1 3767 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝑅𝐵𝐶𝑅𝐵))
20 breq1 3767 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝑅𝐶𝐶𝑅𝐶))
2119, 20bibi12d 224 . . . . . 6 (𝑧 = 𝐶 → ((𝑧𝑅𝐵𝑧𝑅𝐶) ↔ (𝐶𝑅𝐵𝐶𝑅𝐶)))
2221rspcv 2652 . . . . 5 (𝐶𝐴 → (∀𝑧𝐴 (𝑧𝑅𝐵𝑧𝑅𝐶) → (𝐶𝑅𝐵𝐶𝑅𝐶)))
2318, 2, 22sylc 56 . . . 4 (𝜑 → (𝐶𝑅𝐵𝐶𝑅𝐶))
2423biimpa 280 . . 3 ((𝜑𝐶𝑅𝐵) → 𝐶𝑅𝐶)
25 frirrg 4087 . . . . 5 ((𝑅 Fr 𝐴𝐴𝑉𝐶𝐴) → ¬ 𝐶𝑅𝐶)
2611, 12, 18, 25syl3anc 1135 . . . 4 (𝜑 → ¬ 𝐶𝑅𝐶)
2726adantr 261 . . 3 ((𝜑𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐶)
2824, 27pm2.21dd 550 . 2 ((𝜑𝐶𝑅𝐵) → 𝐵 = 𝐶)
29 wetriext.tri . . 3 (𝜑 → ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎))
30 breq1 3767 . . . . . 6 (𝑎 = 𝐵 → (𝑎𝑅𝑏𝐵𝑅𝑏))
31 eqeq1 2046 . . . . . 6 (𝑎 = 𝐵 → (𝑎 = 𝑏𝐵 = 𝑏))
32 breq2 3768 . . . . . 6 (𝑎 = 𝐵 → (𝑏𝑅𝑎𝑏𝑅𝐵))
3330, 31, 323orbi123d 1206 . . . . 5 (𝑎 = 𝐵 → ((𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎) ↔ (𝐵𝑅𝑏𝐵 = 𝑏𝑏𝑅𝐵)))
34 breq2 3768 . . . . . 6 (𝑏 = 𝐶 → (𝐵𝑅𝑏𝐵𝑅𝐶))
35 eqeq2 2049 . . . . . 6 (𝑏 = 𝐶 → (𝐵 = 𝑏𝐵 = 𝐶))
36 breq1 3767 . . . . . 6 (𝑏 = 𝐶 → (𝑏𝑅𝐵𝐶𝑅𝐵))
3734, 35, 363orbi123d 1206 . . . . 5 (𝑏 = 𝐶 → ((𝐵𝑅𝑏𝐵 = 𝑏𝑏𝑅𝐵) ↔ (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
3833, 37rspc2v 2662 . . . 4 ((𝐵𝐴𝐶𝐴) → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
391, 18, 38syl2anc 391 . . 3 (𝜑 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏𝑎 = 𝑏𝑏𝑅𝑎) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵)))
4029, 39mpd 13 . 2 (𝜑 → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
4116, 17, 28, 40mpjao3dan 1202 1 (𝜑𝐵 = 𝐶)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ↔ wb 98   ∨ w3o 884   = wceq 1243   ∈ wcel 1393  ∀wral 2306   class class class wbr 3764   Fr wfr 4065   We wwe 4067 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875 This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-frfor 4068  df-frind 4069  df-wetr 4071 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator