Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unss12 | GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
Ref | Expression |
---|---|
unss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss1 3112 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | |
2 | unss2 3114 | . 2 ⊢ (𝐶 ⊆ 𝐷 → (𝐵 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | |
3 | 1, 2 | sylan9ss 2958 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∪ cun 2915 ⊆ wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 |
This theorem is referenced by: fun 5063 resasplitss 5069 |
Copyright terms: Public domain | W3C validator |