Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisn3 | GIF version |
Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.) |
Ref | Expression |
---|---|
unisn3 | ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsn 3437 | . . 3 ⊢ (𝐴 ∈ 𝐵 → {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = {𝐴}) | |
2 | 1 | unieqd 3591 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = ∪ {𝐴}) |
3 | unisng 3597 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝐴} = 𝐴) | |
4 | 2, 3 | eqtrd 2072 | 1 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 {crab 2310 {csn 3375 ∪ cuni 3580 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-rab 2315 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-uni 3581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |