Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniexb | GIF version |
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 4175 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
2 | pwuni 3943 | . . 3 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
3 | pwexg 3933 | . . 3 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) | |
4 | ssexg 3896 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
5 | 2, 3, 4 | sylancr 393 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) |
6 | 1, 5 | impbii 117 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ∈ wcel 1393 Vcvv 2557 ⊆ wss 2917 𝒫 cpw 3359 ∪ cuni 3580 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 df-uni 3581 |
This theorem is referenced by: pwexb 4206 tfrlemibex 5943 |
Copyright terms: Public domain | W3C validator |