 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  un23 Structured version   GIF version

Theorem un23 3096
 Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
un23 ((AB) ∪ 𝐶) = ((A𝐶) ∪ B)

Proof of Theorem un23
StepHypRef Expression
1 unass 3094 . 2 ((AB) ∪ 𝐶) = (A ∪ (B𝐶))
2 un12 3095 . 2 (A ∪ (B𝐶)) = (B ∪ (A𝐶))
3 uncom 3081 . 2 (B ∪ (A𝐶)) = ((A𝐶) ∪ B)
41, 2, 33eqtri 2061 1 ((AB) ∪ 𝐶) = ((A𝐶) ∪ B)
 Colors of variables: wff set class Syntax hints:   = wceq 1242   ∪ cun 2909 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator