 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  un12 Structured version   GIF version

Theorem un12 3078
 Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un12 (A ∪ (B𝐶)) = (B ∪ (A𝐶))

Proof of Theorem un12
StepHypRef Expression
1 uncom 3064 . . 3 (AB) = (BA)
21uneq1i 3070 . 2 ((AB) ∪ 𝐶) = ((BA) ∪ 𝐶)
3 unass 3077 . 2 ((AB) ∪ 𝐶) = (A ∪ (B𝐶))
4 unass 3077 . 2 ((BA) ∪ 𝐶) = (B ∪ (A𝐶))
52, 3, 43eqtr3i 2050 1 (A ∪ (B𝐶)) = (B ∪ (A𝐶))
 Colors of variables: wff set class Syntax hints:   = wceq 1228   ∪ cun 2892 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004 This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2537  df-un 2899 This theorem is referenced by:  un23  3079  un4  3080
 Copyright terms: Public domain W3C validator