ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trujust Structured version   GIF version

Theorem trujust 1244
Description: Soundness justification theorem for df-tru 1245. (Contributed by Mario Carneiro, 17-Nov-2013.) (Revised by NM, 11-Jul-2019.)
Assertion
Ref Expression
trujust ((x x = xx x = x) ↔ (y y = yy y = y))

Proof of Theorem trujust
StepHypRef Expression
1 id 19 . 2 (x x = xx x = x)
2 id 19 . 2 (y y = yy y = y)
31, 22th 163 1 ((x x = xx x = x) ↔ (y y = yy y = y))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wal 1240   = wceq 1242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator