![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > trubifal | GIF version |
Description: A ↔ identity. (Contributed by David A. Wheeler, 23-Feb-2018.) |
Ref | Expression |
---|---|
trubifal | ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 368 | . 2 ⊢ ((⊤ ↔ ⊥) ↔ ((⊤ → ⊥) ∧ (⊥ → ⊤))) | |
2 | truimfal 1301 | . . 3 ⊢ ((⊤ → ⊥) ↔ ⊥) | |
3 | falimtru 1302 | . . 3 ⊢ ((⊥ → ⊤) ↔ ⊤) | |
4 | 2, 3 | anbi12i 433 | . 2 ⊢ (((⊤ → ⊥) ∧ (⊥ → ⊤)) ↔ (⊥ ∧ ⊤)) |
5 | falantru 1294 | . 2 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) | |
6 | 1, 4, 5 | 3bitri 195 | 1 ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ⊤wtru 1244 ⊥wfal 1248 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 |
This theorem is referenced by: falbitru 1308 |
Copyright terms: Public domain | W3C validator |