ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truanfal GIF version

Theorem truanfal 1290
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truanfal (( ⊤ ⊥ ) ↔ ⊥ )

Proof of Theorem truanfal
StepHypRef Expression
1 truan 1259 1 (( ⊤ ⊥ ) ↔ ⊥ )
Colors of variables: wff set class
Syntax hints:   wa 97  wb 98  wtru 1243  wfal 1247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-tru 1245
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator