Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposeq Structured version   GIF version

Theorem tposeq 5784
 Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
tposeq (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)

Proof of Theorem tposeq
StepHypRef Expression
1 eqimss 2974 . . 3 (𝐹 = 𝐺𝐹𝐺)
2 tposss 5783 . . 3 (𝐹𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
31, 2syl 14 . 2 (𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺)
4 eqimss2 2975 . . 3 (𝐹 = 𝐺𝐺𝐹)
5 tposss 5783 . . 3 (𝐺𝐹 → tpos 𝐺 ⊆ tpos 𝐹)
64, 5syl 14 . 2 (𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹)
73, 6eqssd 2939 1 (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1228   ⊆ wss 2894  tpos ctpos 5781 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-sep 3849  ax-pow 3901  ax-pr 3918 This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-rex 2290  df-v 2537  df-un 2899  df-in 2901  df-ss 2908  df-pw 3336  df-sn 3356  df-pr 3357  df-op 3359  df-br 3739  df-opab 3793  df-mpt 3794  df-xp 4278  df-rel 4279  df-cnv 4280  df-co 4281  df-dm 4282  df-res 4284  df-tpos 5782 This theorem is referenced by:  tposeqd  5785  tposeqi  5814
 Copyright terms: Public domain W3C validator