Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tposeq | GIF version |
Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposeq | ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 2997 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐹 ⊆ 𝐺) | |
2 | tposss 5861 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐹 ⊆ tpos 𝐺) |
4 | eqimss2 2998 | . . 3 ⊢ (𝐹 = 𝐺 → 𝐺 ⊆ 𝐹) | |
5 | tposss 5861 | . . 3 ⊢ (𝐺 ⊆ 𝐹 → tpos 𝐺 ⊆ tpos 𝐹) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐹 = 𝐺 → tpos 𝐺 ⊆ tpos 𝐹) |
7 | 3, 6 | eqssd 2962 | 1 ⊢ (𝐹 = 𝐺 → tpos 𝐹 = tpos 𝐺) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ⊆ wss 2917 tpos ctpos 5859 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-mpt 3820 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-res 4357 df-tpos 5860 |
This theorem is referenced by: tposeqd 5863 tposeqi 5892 |
Copyright terms: Public domain | W3C validator |