ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi14d GIF version

Theorem tfrlemi14d 5947
Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.)
Hypotheses
Ref Expression
tfrlemi14d.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemi14d.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlemi14d (𝜑 → dom recs(𝐹) = On)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝜑,𝑓,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfrlemi14d
Dummy variables 𝑔 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemi14d.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 5934 . . 3 Ord dom recs(𝐹)
3 ordsson 4218 . . 3 (Ord dom recs(𝐹) → dom recs(𝐹) ⊆ On)
42, 3mp1i 10 . 2 (𝜑 → dom recs(𝐹) ⊆ On)
5 tfrlemi14d.2 . . . . . . . 8 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
61, 5tfrlemi1 5946 . . . . . . 7 ((𝜑𝑧 ∈ On) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
75ad2antrr 457 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
8 simplr 482 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑧 ∈ On)
9 simprl 483 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑔 Fn 𝑧)
10 fneq2 4988 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑔 Fn 𝑤𝑔 Fn 𝑧))
11 raleq 2505 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1210, 11anbi12d 442 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1312rspcev 2656 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1413adantll 445 . . . . . . . . . 10 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
15 vex 2560 . . . . . . . . . . 11 𝑔 ∈ V
161, 15tfrlem3a 5925 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1714, 16sylibr 137 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑔𝐴)
181, 7, 8, 9, 17tfrlemisucaccv 5939 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
19 vex 2560 . . . . . . . . . . . 12 𝑧 ∈ V
205tfrlem3-2d 5928 . . . . . . . . . . . . 13 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
2120simprd 107 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑔) ∈ V)
22 opexg 3964 . . . . . . . . . . . 12 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
2319, 21, 22sylancr 393 . . . . . . . . . . 11 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
24 snidg 3400 . . . . . . . . . . 11 (⟨𝑧, (𝐹𝑔)⟩ ∈ V → ⟨𝑧, (𝐹𝑔)⟩ ∈ {⟨𝑧, (𝐹𝑔)⟩})
25 elun2 3111 . . . . . . . . . . 11 (⟨𝑧, (𝐹𝑔)⟩ ∈ {⟨𝑧, (𝐹𝑔)⟩} → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
2623, 24, 253syl 17 . . . . . . . . . 10 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
2726ad2antrr 457 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
28 opeldmg 4540 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
2919, 21, 28sylancr 393 . . . . . . . . . 10 (𝜑 → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3029ad2antrr 457 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3127, 30mpd 13 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
32 dmeq 4535 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
3332eleq2d 2107 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3433rspcev 2656 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
3518, 31, 34syl2anc 391 . . . . . . 7 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
366, 35exlimddv 1778 . . . . . 6 ((𝜑𝑧 ∈ On) → ∃𝐴 𝑧 ∈ dom )
37 eliun 3661 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
3836, 37sylibr 137 . . . . 5 ((𝜑𝑧 ∈ On) → 𝑧 𝐴 dom )
3938ex 108 . . . 4 (𝜑 → (𝑧 ∈ On → 𝑧 𝐴 dom ))
4039ssrdv 2951 . . 3 (𝜑 → On ⊆ 𝐴 dom )
411recsfval 5931 . . . . 5 recs(𝐹) = 𝐴
4241dmeqi 4536 . . . 4 dom recs(𝐹) = dom 𝐴
43 dmuni 4545 . . . 4 dom 𝐴 = 𝐴 dom
4442, 43eqtri 2060 . . 3 dom recs(𝐹) = 𝐴 dom
4540, 44syl6sseqr 2992 . 2 (𝜑 → On ⊆ dom recs(𝐹))
464, 45eqssd 2962 1 (𝜑 → dom recs(𝐹) = On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wal 1241   = wceq 1243  wcel 1393  {cab 2026  wral 2306  wrex 2307  Vcvv 2557  cun 2915  wss 2917  {csn 3375  cop 3378   cuni 3580   ciun 3657  Ord word 4099  Oncon0 4100  dom cdm 4345  cres 4347  Fun wfun 4896   Fn wfn 4897  cfv 4902  recscrecs 5919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920
This theorem is referenced by:  tfri1d  5949
  Copyright terms: Public domain W3C validator