ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  testbitestn Structured version   GIF version

Theorem testbitestn 732
Description: A proposition is testable iff its negation is testable. See also dcn 737. (Contributed by David A. Wheeler, 6-Dec-2018.)
Assertion
Ref Expression
testbitestn (TEST φTEST ¬ φ)

Proof of Theorem testbitestn
StepHypRef Expression
1 notnotnot 615 . . . 4 (¬ ¬ ¬ φ ↔ ¬ φ)
21orbi2i 666 . . 3 ((¬ ¬ φ ¬ ¬ ¬ φ) ↔ (¬ ¬ φ ¬ φ))
3 orcom 634 . . 3 ((¬ ¬ φ ¬ φ) ↔ (¬ φ ¬ ¬ φ))
42, 3bitri 173 . 2 ((¬ ¬ φ ¬ ¬ ¬ φ) ↔ (¬ φ ¬ ¬ φ))
5 df-test 731 . 2 (TEST ¬ φ ↔ (¬ ¬ φ ¬ ¬ ¬ φ))
6 df-test 731 . 2 (TEST φ ↔ (¬ φ ¬ ¬ φ))
74, 5, 63bitr4ri 202 1 (TEST φTEST ¬ φ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 98   wo 616  TEST wtest 730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617
This theorem depends on definitions:  df-bi 110  df-test 731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator