Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5reqr GIF version

Theorem syl5reqr 2087
 Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
syl5reqr.1 𝐵 = 𝐴
syl5reqr.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
syl5reqr (𝜑𝐶 = 𝐴)

Proof of Theorem syl5reqr
StepHypRef Expression
1 syl5reqr.1 . . 3 𝐵 = 𝐴
21eqcomi 2044 . 2 𝐴 = 𝐵
3 syl5reqr.2 . 2 (𝜑𝐵 = 𝐶)
42, 3syl5req 2085 1 (𝜑𝐶 = 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-4 1400  ax-17 1419  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-cleq 2033 This theorem is referenced by:  bm2.5ii  4222  f1o00  5161  fmpt  5319  fmptsn  5352  resfunexg  5382  prarloclem5  6598  recexprlem1ssl  6731  recexprlem1ssu  6732  iooval2  8784  resqrexlemover  9608
 Copyright terms: Public domain W3C validator