Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3anl2 | GIF version |
Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
syl3anl2.1 | ⊢ (𝜑 → 𝜒) |
syl3anl2.2 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl3anl2 | ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | syl3anl2.2 | . . . 4 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
3 | 2 | ex 108 | . . 3 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜏 → 𝜂)) |
4 | 1, 3 | syl3an2 1169 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → (𝜏 → 𝜂)) |
5 | 4 | imp 115 | 1 ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: syl3anr2 1188 |
Copyright terms: Public domain | W3C validator |