ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an3br Structured version   GIF version

Theorem syl3an3br 1175
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3br.1 (θφ)
syl3an3br.2 ((ψ χ θ) → τ)
Assertion
Ref Expression
syl3an3br ((ψ χ φ) → τ)

Proof of Theorem syl3an3br
StepHypRef Expression
1 syl3an3br.1 . . 3 (θφ)
21biimpri 124 . 2 (φθ)
3 syl3an3br.2 . 2 ((ψ χ θ) → τ)
42, 3syl3an3 1169 1 ((ψ χ φ) → τ)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   w3a 884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 886
This theorem is referenced by:  opelrng  4509
  Copyright terms: Public domain W3C validator