Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl213anc GIF version

Theorem syl213anc 1154
 Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
sylXanc.6 (𝜑𝜁)
syl213anc.7 (((𝜓𝜒) ∧ 𝜃 ∧ (𝜏𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl213anc (𝜑𝜎)

Proof of Theorem syl213anc
StepHypRef Expression
1 sylXanc.1 . . 3 (𝜑𝜓)
2 sylXanc.2 . . 3 (𝜑𝜒)
31, 2jca 290 . 2 (𝜑 → (𝜓𝜒))
4 sylXanc.3 . 2 (𝜑𝜃)
5 sylXanc.4 . 2 (𝜑𝜏)
6 sylXanc.5 . 2 (𝜑𝜂)
7 sylXanc.6 . 2 (𝜑𝜁)
8 syl213anc.7 . 2 (((𝜓𝜒) ∧ 𝜃 ∧ (𝜏𝜂𝜁)) → 𝜎)
93, 4, 5, 6, 7, 8syl113anc 1147 1 (𝜑𝜎)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∧ w3a 885 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101 This theorem depends on definitions:  df-bi 110  df-3an 887 This theorem is referenced by:  syl223anc  1161
 Copyright terms: Public domain W3C validator