Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  swopolem GIF version

Theorem swopolem 4042
 Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
swopolem.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
Assertion
Ref Expression
swopolem ((𝜑 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑦,𝑌,𝑧   𝑧,𝑍
Allowed substitution hints:   𝑌(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem swopolem
StepHypRef Expression
1 swopolem.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
21ralrimivvva 2402 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
3 breq1 3767 . . . 4 (𝑥 = 𝑋 → (𝑥𝑅𝑦𝑋𝑅𝑦))
4 breq1 3767 . . . . 5 (𝑥 = 𝑋 → (𝑥𝑅𝑧𝑋𝑅𝑧))
54orbi1d 705 . . . 4 (𝑥 = 𝑋 → ((𝑥𝑅𝑧𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧𝑧𝑅𝑦)))
63, 5imbi12d 223 . . 3 (𝑥 = 𝑋 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑦 → (𝑋𝑅𝑧𝑧𝑅𝑦))))
7 breq2 3768 . . . 4 (𝑦 = 𝑌 → (𝑋𝑅𝑦𝑋𝑅𝑌))
8 breq2 3768 . . . . 5 (𝑦 = 𝑌 → (𝑧𝑅𝑦𝑧𝑅𝑌))
98orbi2d 704 . . . 4 (𝑦 = 𝑌 → ((𝑋𝑅𝑧𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧𝑧𝑅𝑌)))
107, 9imbi12d 223 . . 3 (𝑦 = 𝑌 → ((𝑋𝑅𝑦 → (𝑋𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑧𝑧𝑅𝑌))))
11 breq2 3768 . . . . 5 (𝑧 = 𝑍 → (𝑋𝑅𝑧𝑋𝑅𝑍))
12 breq1 3767 . . . . 5 (𝑧 = 𝑍 → (𝑧𝑅𝑌𝑍𝑅𝑌))
1311, 12orbi12d 707 . . . 4 (𝑧 = 𝑍 → ((𝑋𝑅𝑧𝑧𝑅𝑌) ↔ (𝑋𝑅𝑍𝑍𝑅𝑌)))
1413imbi2d 219 . . 3 (𝑧 = 𝑍 → ((𝑋𝑅𝑌 → (𝑋𝑅𝑧𝑧𝑅𝑌)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌))))
156, 10, 14rspc3v 2665 . 2 ((𝑋𝐴𝑌𝐴𝑍𝐴) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌))))
162, 15mpan9 265 1 ((𝜑 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∨ wo 629   ∧ w3a 885   = wceq 1243   ∈ wcel 1393  ∀wral 2306   class class class wbr 3764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765 This theorem is referenced by:  swoer  6134  swoord1  6135  swoord2  6136
 Copyright terms: Public domain W3C validator