Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssfv GIF version

Theorem suppssfv 5708
 Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssfv.a (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssfv.f (𝜑 → (𝐹𝑌) = 𝑍)
suppssfv.v ((𝜑𝑥𝐷) → 𝐴𝑉)
Assertion
Ref Expression
suppssfv (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑌   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 3496 . . . . 5 ((𝐹𝐴) ∈ (V ∖ {𝑍}) → (𝐹𝐴) ≠ 𝑍)
2 suppssfv.v . . . . . . . . 9 ((𝜑𝑥𝐷) → 𝐴𝑉)
3 elex 2566 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ V)
42, 3syl 14 . . . . . . . 8 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
54adantr 261 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ V)
6 suppssfv.f . . . . . . . . . . 11 (𝜑 → (𝐹𝑌) = 𝑍)
7 fveq2 5178 . . . . . . . . . . . 12 (𝐴 = 𝑌 → (𝐹𝐴) = (𝐹𝑌))
87eqeq1d 2048 . . . . . . . . . . 11 (𝐴 = 𝑌 → ((𝐹𝐴) = 𝑍 ↔ (𝐹𝑌) = 𝑍))
96, 8syl5ibrcom 146 . . . . . . . . . 10 (𝜑 → (𝐴 = 𝑌 → (𝐹𝐴) = 𝑍))
109necon3d 2249 . . . . . . . . 9 (𝜑 → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1110adantr 261 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴𝑌))
1211imp 115 . . . . . . 7 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴𝑌)
13 eldifsn 3495 . . . . . . 7 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
145, 12, 13sylanbrc 394 . . . . . 6 (((𝜑𝑥𝐷) ∧ (𝐹𝐴) ≠ 𝑍) → 𝐴 ∈ (V ∖ {𝑌}))
1514ex 108 . . . . 5 ((𝜑𝑥𝐷) → ((𝐹𝐴) ≠ 𝑍𝐴 ∈ (V ∖ {𝑌})))
161, 15syl5 28 . . . 4 ((𝜑𝑥𝐷) → ((𝐹𝐴) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
1716ss2rabdv 3021 . . 3 (𝜑 → {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
18 eqid 2040 . . . 4 (𝑥𝐷 ↦ (𝐹𝐴)) = (𝑥𝐷 ↦ (𝐹𝐴))
1918mptpreima 4814 . . 3 ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) = {𝑥𝐷 ∣ (𝐹𝐴) ∈ (V ∖ {𝑍})}
20 eqid 2040 . . . 4 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
2120mptpreima 4814 . . 3 ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})}
2217, 19, 213sstr4g 2986 . 2 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ ((𝑥𝐷𝐴) “ (V ∖ {𝑌})))
23 suppssfv.a . 2 (𝜑 → ((𝑥𝐷𝐴) “ (V ∖ {𝑌})) ⊆ 𝐿)
2422, 23sstrd 2955 1 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝐴)) “ (V ∖ {𝑍})) ⊆ 𝐿)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   = wceq 1243   ∈ wcel 1393   ≠ wne 2204  {crab 2310  Vcvv 2557   ∖ cdif 2914   ⊆ wss 2917  {csn 3375   ↦ cmpt 3818  ◡ccnv 4344   “ cima 4348  ‘cfv 4902 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fv 4910 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator