Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucinc | GIF version |
Description: Successor is increasing. (Contributed by Jim Kingdon, 25-Jun-2019.) |
Ref | Expression |
---|---|
sucinc.1 | ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) |
Ref | Expression |
---|---|
sucinc | ⊢ ∀𝑥 𝑥 ⊆ (𝐹‘𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssucid 4152 | . . 3 ⊢ 𝑥 ⊆ suc 𝑥 | |
2 | vex 2560 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | sucex 4225 | . . . 4 ⊢ suc 𝑥 ∈ V |
4 | suceq 4139 | . . . . 5 ⊢ (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥) | |
5 | sucinc.1 | . . . . 5 ⊢ 𝐹 = (𝑧 ∈ V ↦ suc 𝑧) | |
6 | 4, 5 | fvmptg 5248 | . . . 4 ⊢ ((𝑥 ∈ V ∧ suc 𝑥 ∈ V) → (𝐹‘𝑥) = suc 𝑥) |
7 | 2, 3, 6 | mp2an 402 | . . 3 ⊢ (𝐹‘𝑥) = suc 𝑥 |
8 | 1, 7 | sseqtr4i 2978 | . 2 ⊢ 𝑥 ⊆ (𝐹‘𝑥) |
9 | 8 | ax-gen 1338 | 1 ⊢ ∀𝑥 𝑥 ⊆ (𝐹‘𝑥) |
Colors of variables: wff set class |
Syntax hints: ∀wal 1241 = wceq 1243 ∈ wcel 1393 Vcvv 2557 ⊆ wss 2917 ↦ cmpt 3818 suc csuc 4102 ‘cfv 4902 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-suc 4108 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |