ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucexg Structured version   GIF version

Theorem sucexg 4174
Description: The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
sucexg (A 𝑉 → suc A V)

Proof of Theorem sucexg
StepHypRef Expression
1 elex 2543 . 2 (A 𝑉A V)
2 sucexb 4173 . 2 (A V ↔ suc A V)
31, 2sylib 127 1 (A 𝑉 → suc A V)
Colors of variables: wff set class
Syntax hints:  wi 4   wcel 1374  Vcvv 2535  suc csuc 4051
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-13 1385  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-sep 3849  ax-pow 3901  ax-pr 3918  ax-un 4120
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-rex 2290  df-v 2537  df-un 2899  df-in 2901  df-ss 2908  df-pw 3336  df-sn 3356  df-pr 3357  df-uni 3555  df-suc 4057
This theorem is referenced by:  sucex  4175  suceloni  4177  peano2  4245  sucinc2  5941  oav2  5958
  Copyright terms: Public domain W3C validator