ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suc11 Structured version   GIF version

Theorem suc11 4220
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
suc11 ((A On B On) → (suc A = suc BA = B))

Proof of Theorem suc11
StepHypRef Expression
1 suc11g 4219 1 ((A On B On) → (suc A = suc BA = B))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1228   wcel 1374  Oncon0 4049  suc csuc 4051
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-setind 4204
This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-v 2537  df-dif 2897  df-un 2899  df-sn 3356  df-pr 3357  df-suc 4057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator