ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 Structured version   GIF version

Theorem ssun2 3084
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2 A ⊆ (BA)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3083 . 2 A ⊆ (AB)
2 uncom 3064 . 2 (AB) = (BA)
31, 2sseqtri 2954 1 A ⊆ (BA)
Colors of variables: wff set class
Syntax hints:  cun 2892  wss 2894
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2537  df-un 2899  df-in 2901  df-ss 2908
This theorem is referenced by:  ssun4  3086  elun2  3088  nsspssun  3147  unv  3231  un00  3240  snsspr2  3487  snsstp3  3490  unexb  4127  rnexg  4524  brtpos0  5789  ltrelxr  6681  bdunexb  7290
  Copyright terms: Public domain W3C validator