Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnel Structured version   GIF version

Theorem ssnel 4229
 Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.)
Assertion
Ref Expression
ssnel (AB → ¬ B A)

Proof of Theorem ssnel
StepHypRef Expression
1 elirr 4208 . 2 ¬ B B
2 ssel 2916 . 2 (AB → (B AB B))
31, 2mtoi 577 1 (AB → ¬ B A)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∈ wcel 1374   ⊆ wss 2894 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004  ax-setind 4204 This theorem depends on definitions:  df-bi 110  df-3an 875  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ne 2188  df-ral 2289  df-v 2537  df-dif 2897  df-in 2901  df-ss 2908  df-sn 3356 This theorem is referenced by:  nntri1  5989
 Copyright terms: Public domain W3C validator