Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssiin GIF version

Theorem ssiin 3707
 Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
ssiin (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssiin
StepHypRef Expression
1 nfcv 2178 . 2 𝑥𝐶
21ssiinf 3706 1 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
 Colors of variables: wff set class Syntax hints:   ↔ wb 98  ∀wral 2306   ⊆ wss 2917  ∩ ciin 3658 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-iin 3660 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator