Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssexd | GIF version |
Description: A subclass of a set is a set. Deduction form of ssexg 3896. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssexd.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
ssexd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssexd | ⊢ (𝜑 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssexd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
3 | ssexg 3896 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | |
4 | 1, 2, 3 | syl2anc 391 | 1 ⊢ (𝜑 → 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1393 Vcvv 2557 ⊆ wss 2917 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-in 2924 df-ss 2931 |
This theorem is referenced by: fex2 5059 riotaexg 5472 opabbrex 5549 f1imaen2g 6273 genipv 6607 iseqss 9226 ovshftex 9420 |
Copyright terms: Public domain | W3C validator |