ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq2d Structured version   GIF version

Theorem sseq2d 2967
Description: An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
Hypothesis
Ref Expression
sseq1d.1 (φA = B)
Assertion
Ref Expression
sseq2d (φ → (𝐶A𝐶B))

Proof of Theorem sseq2d
StepHypRef Expression
1 sseq1d.1 . 2 (φA = B)
2 sseq2 2961 . 2 (A = B → (𝐶A𝐶B))
31, 2syl 14 1 (φ → (𝐶A𝐶B))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1242  wss 2911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925
This theorem is referenced by:  sseq12d  2968  sseqtrd  2975  onsucsssucexmid  4212  sbcrel  4369  funimass2  4920  fnco  4950  fnssresb  4954  fnimaeq0  4963  foimacnv  5087  fvelimab  5172  ssimaexg  5178  fvmptss2  5190  rdgss  5910  frecsuclemdm  5927
  Copyright terms: Public domain W3C validator