![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssdisj | GIF version |
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.) |
Ref | Expression |
---|---|
ssdisj | ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3256 | . . . 4 ⊢ ((𝐵 ∩ 𝐶) ⊆ ∅ ↔ (𝐵 ∩ 𝐶) = ∅) | |
2 | ssrin 3162 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
3 | sstr2 2952 | . . . . 5 ⊢ ((𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶) → ((𝐵 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) ⊆ ∅)) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) ⊆ ∅)) |
5 | 1, 4 | syl5bir 142 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∩ 𝐶) = ∅ → (𝐴 ∩ 𝐶) ⊆ ∅)) |
6 | 5 | imp 115 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) ⊆ ∅) |
7 | ss0 3257 | . 2 ⊢ ((𝐴 ∩ 𝐶) ⊆ ∅ → (𝐴 ∩ 𝐶) = ∅) | |
8 | 6, 7 | syl 14 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (𝐴 ∩ 𝐶) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∩ cin 2916 ⊆ wss 2917 ∅c0 3224 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-in 2924 df-ss 2931 df-nul 3225 |
This theorem is referenced by: djudisj 4750 fimacnvdisj 5074 |
Copyright terms: Public domain | W3C validator |