![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > squeeze0 | GIF version |
Description: If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.) |
Ref | Expression |
---|---|
squeeze0 | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltnr 7095 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
2 | 1 | 3ad2ant1 925 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → ¬ 𝐴 < 𝐴) |
3 | breq2 3768 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
4 | breq2 3768 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐴)) | |
5 | 3, 4 | imbi12d 223 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((0 < 𝑥 → 𝐴 < 𝑥) ↔ (0 < 𝐴 → 𝐴 < 𝐴))) |
6 | 5 | rspcva 2654 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → (0 < 𝐴 → 𝐴 < 𝐴)) |
7 | 6 | 3adant2 923 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → (0 < 𝐴 → 𝐴 < 𝐴)) |
8 | 2, 7 | mtod 589 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → ¬ 0 < 𝐴) |
9 | simp1 904 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ∈ ℝ) | |
10 | 0red 7028 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 0 ∈ ℝ) | |
11 | 9, 10 | lenltd 7134 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) |
12 | 8, 11 | mpbird 156 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 ≤ 0) |
13 | simp2 905 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 0 ≤ 𝐴) | |
14 | 9, 10 | letri3d 7133 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴))) |
15 | 12, 13, 14 | mpbir2and 851 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥 → 𝐴 < 𝑥)) → 𝐴 = 0) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 885 = wceq 1243 ∈ wcel 1393 ∀wral 2306 class class class wbr 3764 ℝcr 6888 0cc0 6889 < clt 7060 ≤ cle 7061 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-1re 6978 ax-addrcl 6981 ax-rnegex 6993 ax-pre-ltirr 6996 ax-pre-apti 6999 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-cnv 4353 df-pnf 7062 df-mnf 7063 df-xr 7064 df-ltxr 7065 df-le 7066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |