ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsd Structured version   GIF version

Theorem spsd 1428
Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.)
Hypothesis
Ref Expression
spsd.1 (φ → (ψχ))
Assertion
Ref Expression
spsd (φ → (xψχ))

Proof of Theorem spsd
StepHypRef Expression
1 sp 1398 . 2 (xψψ)
2 spsd.1 . 2 (φ → (ψχ))
31, 2syl5 28 1 (φ → (xψχ))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-4 1397
This theorem is referenced by:  moexexdc  1981  euexex  1982
  Copyright terms: Public domain W3C validator