Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spsbcd GIF version

Theorem spsbcd 2776
 Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1658 and rspsbc 2840. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypotheses
Ref Expression
spsbcd.1 (𝜑𝐴𝑉)
spsbcd.2 (𝜑 → ∀𝑥𝜓)
Assertion
Ref Expression
spsbcd (𝜑[𝐴 / 𝑥]𝜓)

Proof of Theorem spsbcd
StepHypRef Expression
1 spsbcd.1 . 2 (𝜑𝐴𝑉)
2 spsbcd.2 . 2 (𝜑 → ∀𝑥𝜓)
3 spsbc 2775 . 2 (𝐴𝑉 → (∀𝑥𝜓[𝐴 / 𝑥]𝜓))
41, 2, 3sylc 56 1 (𝜑[𝐴 / 𝑥]𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1241   ∈ wcel 1393  [wsbc 2764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559  df-sbc 2765 This theorem is referenced by:  ovmpt2dxf  5626
 Copyright terms: Public domain W3C validator