![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sprmpt2 | GIF version |
Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
Ref | Expression |
---|---|
sprmpt2.1 | ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣𝑊𝑒)𝑝 ∧ 𝜒)}) |
sprmpt2.2 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) |
sprmpt2.3 | ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝 → 𝜃)) |
sprmpt2.4 | ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ 𝜃} ∈ V) |
Ref | Expression |
---|---|
sprmpt2 | ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑀𝐸) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sprmpt2.1 | . . 3 ⊢ 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣𝑊𝑒)𝑝 ∧ 𝜒)}) | |
2 | 1 | a1i 9 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑀 = (𝑣 ∈ V, 𝑒 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣𝑊𝑒)𝑝 ∧ 𝜒)})) |
3 | oveq12 5521 | . . . . . 6 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑣𝑊𝑒) = (𝑉𝑊𝐸)) | |
4 | 3 | adantl 262 | . . . . 5 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑣𝑊𝑒) = (𝑉𝑊𝐸)) |
5 | 4 | breqd 3775 | . . . 4 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝑓(𝑣𝑊𝑒)𝑝 ↔ 𝑓(𝑉𝑊𝐸)𝑝)) |
6 | sprmpt2.2 | . . . . 5 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜒 ↔ 𝜓)) | |
7 | 6 | adantl 262 | . . . 4 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → (𝜒 ↔ 𝜓)) |
8 | 5, 7 | anbi12d 442 | . . 3 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → ((𝑓(𝑣𝑊𝑒)𝑝 ∧ 𝜒) ↔ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓))) |
9 | 8 | opabbidv 3823 | . 2 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝑣 = 𝑉 ∧ 𝑒 = 𝐸)) → {〈𝑓, 𝑝〉 ∣ (𝑓(𝑣𝑊𝑒)𝑝 ∧ 𝜒)} = {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)}) |
10 | simpl 102 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V) | |
11 | simpr 103 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝐸 ∈ V) | |
12 | sprmpt2.3 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝 → 𝜃)) | |
13 | sprmpt2.4 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ 𝜃} ∈ V) | |
14 | 12, 13 | opabbrex 5549 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)} ∈ V) |
15 | 2, 9, 10, 11, 14 | ovmpt2d 5628 | 1 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑀𝐸) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 ∈ wcel 1393 Vcvv 2557 class class class wbr 3764 {copab 3817 (class class class)co 5512 ↦ cmpt2 5514 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |