ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spimt Structured version   GIF version

Theorem spimt 1621
Description: Closed theorem form of spim 1623. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.)
Assertion
Ref Expression
spimt ((Ⅎxψ x(x = y → (φψ))) → (xφψ))

Proof of Theorem spimt
StepHypRef Expression
1 a9e 1583 . . . 4 x x = y
2 exim 1487 . . . 4 (x(x = y → (φψ)) → (x x = yx(φψ)))
31, 2mpi 15 . . 3 (x(x = y → (φψ)) → x(φψ))
4 19.35-1 1512 . . 3 (x(φψ) → (xφxψ))
53, 4syl 14 . 2 (x(x = y → (φψ)) → (xφxψ))
6 19.9t 1530 . . 3 (Ⅎxψ → (xψψ))
76biimpd 132 . 2 (Ⅎxψ → (xψψ))
85, 7sylan9r 390 1 ((Ⅎxψ x(x = y → (φψ))) → (xφψ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wal 1240   = wceq 1242  wnf 1346  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-nf 1347
This theorem is referenced by:  spimd  9220
  Copyright terms: Public domain W3C validator