Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimgf GIF version

Theorem spcimgf 2633
 Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgf.1 𝑥𝐴
spcimgf.2 𝑥𝜓
spcimgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcimgf (𝐴𝑉 → (∀𝑥𝜑𝜓))

Proof of Theorem spcimgf
StepHypRef Expression
1 spcimgf.2 . . 3 𝑥𝜓
2 spcimgf.1 . . 3 𝑥𝐴
31, 2spcimgft 2629 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉 → (∀𝑥𝜑𝜓)))
4 spcimgf.3 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpg 1340 1 (𝐴𝑉 → (∀𝑥𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1241   = wceq 1243  Ⅎwnf 1349   ∈ wcel 1393  Ⅎwnfc 2165 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559 This theorem is referenced by:  bj-nn0sucALT  10103
 Copyright terms: Public domain W3C validator