ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sowlin GIF version

Theorem sowlin 4057
Description: A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.)
Assertion
Ref Expression
sowlin ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶)))

Proof of Theorem sowlin
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3767 . . . . 5 (𝑥 = 𝐵 → (𝑥𝑅𝑦𝐵𝑅𝑦))
2 breq1 3767 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝑅𝑧𝐵𝑅𝑧))
32orbi1d 705 . . . . 5 (𝑥 = 𝐵 → ((𝑥𝑅𝑧𝑧𝑅𝑦) ↔ (𝐵𝑅𝑧𝑧𝑅𝑦)))
41, 3imbi12d 223 . . . 4 (𝑥 = 𝐵 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝐵𝑅𝑦 → (𝐵𝑅𝑧𝑧𝑅𝑦))))
54imbi2d 219 . . 3 (𝑥 = 𝐵 → ((𝑅 Or 𝐴 → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝑦 → (𝐵𝑅𝑧𝑧𝑅𝑦)))))
6 breq2 3768 . . . . 5 (𝑦 = 𝐶 → (𝐵𝑅𝑦𝐵𝑅𝐶))
7 breq2 3768 . . . . . 6 (𝑦 = 𝐶 → (𝑧𝑅𝑦𝑧𝑅𝐶))
87orbi2d 704 . . . . 5 (𝑦 = 𝐶 → ((𝐵𝑅𝑧𝑧𝑅𝑦) ↔ (𝐵𝑅𝑧𝑧𝑅𝐶)))
96, 8imbi12d 223 . . . 4 (𝑦 = 𝐶 → ((𝐵𝑅𝑦 → (𝐵𝑅𝑧𝑧𝑅𝑦)) ↔ (𝐵𝑅𝐶 → (𝐵𝑅𝑧𝑧𝑅𝐶))))
109imbi2d 219 . . 3 (𝑦 = 𝐶 → ((𝑅 Or 𝐴 → (𝐵𝑅𝑦 → (𝐵𝑅𝑧𝑧𝑅𝑦))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝑧𝑧𝑅𝐶)))))
11 breq2 3768 . . . . . 6 (𝑧 = 𝐷 → (𝐵𝑅𝑧𝐵𝑅𝐷))
12 breq1 3767 . . . . . 6 (𝑧 = 𝐷 → (𝑧𝑅𝐶𝐷𝑅𝐶))
1311, 12orbi12d 707 . . . . 5 (𝑧 = 𝐷 → ((𝐵𝑅𝑧𝑧𝑅𝐶) ↔ (𝐵𝑅𝐷𝐷𝑅𝐶)))
1413imbi2d 219 . . . 4 (𝑧 = 𝐷 → ((𝐵𝑅𝐶 → (𝐵𝑅𝑧𝑧𝑅𝐶)) ↔ (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶))))
1514imbi2d 219 . . 3 (𝑧 = 𝐷 → ((𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝑧𝑧𝑅𝐶))) ↔ (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶)))))
16 df-iso 4034 . . . . 5 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
17 3anass 889 . . . . . . 7 ((𝑥𝐴𝑦𝐴𝑧𝐴) ↔ (𝑥𝐴 ∧ (𝑦𝐴𝑧𝐴)))
18 rsp 2369 . . . . . . . . 9 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → (𝑥𝐴 → ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
19 rsp2 2371 . . . . . . . . 9 (∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → ((𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
2018, 19syl6 29 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → (𝑥𝐴 → ((𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))))
2120impd 242 . . . . . . 7 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → ((𝑥𝐴 ∧ (𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
2217, 21syl5bi 141 . . . . . 6 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
2322adantl 262 . . . . 5 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))) → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
2416, 23sylbi 114 . . . 4 (𝑅 Or 𝐴 → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
2524com12 27 . . 3 ((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑅 Or 𝐴 → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦))))
265, 10, 15, 25vtocl3ga 2623 . 2 ((𝐵𝐴𝐶𝐴𝐷𝐴) → (𝑅 Or 𝐴 → (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶))))
2726impcom 116 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐷𝐴)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐷𝐷𝑅𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wo 629  w3a 885   = wceq 1243  wcel 1393  wral 2306   class class class wbr 3764   Po wpo 4031   Or wor 4032
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-iso 4034
This theorem is referenced by:  sotri2  4722  sotri3  4723  addextpr  6719  cauappcvgprlemloc  6750  caucvgprlemloc  6773  caucvgprprlemloc  6801  caucvgprprlemaddq  6806  ltsosr  6849  axpre-ltwlin  6957  xrlelttr  8722  xrltletr  8723  xrletr  8724
  Copyright terms: Public domain W3C validator