ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snriota Structured version   GIF version

Theorem snriota 5440
Description: A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.)
Assertion
Ref Expression
snriota (∃!x A φ → {x Aφ} = {(x A φ)})

Proof of Theorem snriota
StepHypRef Expression
1 df-reu 2307 . . 3 (∃!x A φ∃!x(x A φ))
2 sniota 4837 . . 3 (∃!x(x A φ) → {x ∣ (x A φ)} = {(℩x(x A φ))})
31, 2sylbi 114 . 2 (∃!x A φ → {x ∣ (x A φ)} = {(℩x(x A φ))})
4 df-rab 2309 . 2 {x Aφ} = {x ∣ (x A φ)}
5 df-riota 5411 . . 3 (x A φ) = (℩x(x A φ))
65sneqi 3379 . 2 {(x A φ)} = {(℩x(x A φ))}
73, 4, 63eqtr4g 2094 1 (∃!x A φ → {x Aφ} = {(x A φ)})
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   = wceq 1242   wcel 1390  ∃!weu 1897  {cab 2023  ∃!wreu 2302  {crab 2304  {csn 3367  cio 4808  crio 5410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-un 2916  df-sn 3373  df-pr 3374  df-uni 3572  df-iota 4810  df-riota 5411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator