![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snnen2og | GIF version |
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. If 𝐴 is a proper class, see snnen2oprc 6323. (Contributed by Jim Kingdon, 1-Sep-2021.) |
Ref | Expression |
---|---|
snnen2og | ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6093 | . . 3 ⊢ 1𝑜 ∈ ω | |
2 | php5 6321 | . . 3 ⊢ (1𝑜 ∈ ω → ¬ 1𝑜 ≈ suc 1𝑜) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ ¬ 1𝑜 ≈ suc 1𝑜 |
4 | ensn1g 6277 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≈ 1𝑜) | |
5 | df-2o 6002 | . . . . 5 ⊢ 2𝑜 = suc 1𝑜 | |
6 | 5 | eqcomi 2044 | . . . 4 ⊢ suc 1𝑜 = 2𝑜 |
7 | 6 | breq2i 3772 | . . 3 ⊢ (1𝑜 ≈ suc 1𝑜 ↔ 1𝑜 ≈ 2𝑜) |
8 | ensymb 6260 | . . . . 5 ⊢ ({𝐴} ≈ 1𝑜 ↔ 1𝑜 ≈ {𝐴}) | |
9 | entr 6264 | . . . . . 6 ⊢ ((1𝑜 ≈ {𝐴} ∧ {𝐴} ≈ 2𝑜) → 1𝑜 ≈ 2𝑜) | |
10 | 9 | ex 108 | . . . . 5 ⊢ (1𝑜 ≈ {𝐴} → ({𝐴} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜)) |
11 | 8, 10 | sylbi 114 | . . . 4 ⊢ ({𝐴} ≈ 1𝑜 → ({𝐴} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜)) |
12 | 11 | con3rr3 563 | . . 3 ⊢ (¬ 1𝑜 ≈ 2𝑜 → ({𝐴} ≈ 1𝑜 → ¬ {𝐴} ≈ 2𝑜)) |
13 | 7, 12 | sylnbi 603 | . 2 ⊢ (¬ 1𝑜 ≈ suc 1𝑜 → ({𝐴} ≈ 1𝑜 → ¬ {𝐴} ≈ 2𝑜)) |
14 | 3, 4, 13 | mpsyl 59 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ≈ 2𝑜) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1393 {csn 3375 class class class wbr 3764 suc csuc 4102 ωcom 4313 1𝑜c1o 5994 2𝑜c2o 5995 ≈ cen 6219 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-br 3765 df-opab 3819 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-1o 6001 df-2o 6002 df-er 6106 df-en 6222 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |