![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > ILE Home > Th. List > snex | Structured version GIF version |
Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
snex.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
snex | ⊢ {A} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex.1 | . 2 ⊢ A ∈ V | |
2 | snexg 3909 | . 2 ⊢ (A ∈ V → {A} ∈ V) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ {A} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1375 Vcvv 2534 {csn 3349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 617 ax-5 1316 ax-7 1317 ax-gen 1318 ax-ie1 1364 ax-ie2 1365 ax-8 1377 ax-10 1378 ax-11 1379 ax-i12 1380 ax-bnd 1381 ax-4 1382 ax-14 1387 ax-17 1401 ax-i9 1405 ax-ial 1410 ax-i5r 1411 ax-ext 2005 ax-sep 3848 ax-pow 3900 |
This theorem depends on definitions: df-bi 110 df-tru 1231 df-nf 1330 df-sb 1629 df-clab 2010 df-cleq 2016 df-clel 2019 df-nfc 2150 df-v 2536 df-in 2900 df-ss 2907 df-pw 3335 df-sn 3355 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |