ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snex Structured version   GIF version

Theorem snex 3910
Description: A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
snex.1 A V
Assertion
Ref Expression
snex {A} V

Proof of Theorem snex
StepHypRef Expression
1 snex.1 . 2 A V
2 snexg 3909 . 2 (A V → {A} V)
31, 2ax-mp 7 1 {A} V
Colors of variables: wff set class
Syntax hints:   wcel 1375  Vcvv 2534  {csn 3349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1364  ax-ie2 1365  ax-8 1377  ax-10 1378  ax-11 1379  ax-i12 1380  ax-bnd 1381  ax-4 1382  ax-14 1387  ax-17 1401  ax-i9 1405  ax-ial 1410  ax-i5r 1411  ax-ext 2005  ax-sep 3848  ax-pow 3900
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1629  df-clab 2010  df-cleq 2016  df-clel 2019  df-nfc 2150  df-v 2536  df-in 2900  df-ss 2907  df-pw 3335  df-sn 3355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator