![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpr3 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 906 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
2 | 1 | adantl 262 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: simplr3 948 simprr3 954 simp1r3 1002 simp2r3 1008 simp3r3 1014 3anandis 1237 isopolem 5461 tfrlemibacc 5940 tfrlemibxssdm 5941 tfrlemibfn 5942 prloc 6589 prmuloc2 6665 eluzuzle 8481 elioc2 8805 elico2 8806 elicc2 8807 fseq1p1m1 8956 |
Copyright terms: Public domain | W3C validator |