![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpr2 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 905 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
2 | 1 | adantl 262 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: simplr2 947 simprr2 953 simp1r2 1001 simp2r2 1007 simp3r2 1013 3anandis 1237 isopolem 5461 tfrlemibacc 5940 tfrlemibfn 5942 prltlu 6585 prdisj 6590 prmuloc2 6665 eluzuzle 8481 elioc2 8805 elico2 8806 elicc2 8807 fseq1p1m1 8956 fz0fzelfz0 8984 |
Copyright terms: Public domain | W3C validator |