ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2l1 GIF version

Theorem simp2l1 1003
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2l1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜑)

Proof of Theorem simp2l1
StepHypRef Expression
1 simpl1 907 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
213ad2ant2 926 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator