Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp23 | GIF version |
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
simp23 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 906 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
2 | 1 | 3ad2ant2 926 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: simpl23 984 simpr23 993 simp123 1038 simp223 1047 simp323 1056 funtpg 4950 |
Copyright terms: Public domain | W3C validator |