Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp22 | GIF version |
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
simp22 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 905 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜒) | |
2 | 1 | 3ad2ant2 926 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: simpl22 983 simpr22 992 simp122 1037 simp222 1046 simp322 1055 prarloclem5 6598 |
Copyright terms: Public domain | W3C validator |