ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp21 GIF version

Theorem simp21 937
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp21 ((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜓)

Proof of Theorem simp21
StepHypRef Expression
1 simp1 904 . 2 ((𝜓𝜒𝜃) → 𝜓)
213ad2ant2 926 1 ((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 887
This theorem is referenced by:  simpl21  982  simpr21  991  simp121  1036  simp221  1045  simp321  1054
  Copyright terms: Public domain W3C validator