ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1r2 GIF version

Theorem simp1r2 1001
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp1r2 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏𝜂) → 𝜓)

Proof of Theorem simp1r2
StepHypRef Expression
1 simpr2 911 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant1 925 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏𝜂) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator