ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sborv GIF version

Theorem sborv 1770
Description: Version of sbor 1828 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sborv ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sborv
StepHypRef Expression
1 sb5 1767 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ∃𝑥(𝑥 = 𝑦 ∧ (𝜑𝜓)))
2 andi 731 . . . 4 ((𝑥 = 𝑦 ∧ (𝜑𝜓)) ↔ ((𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜓)))
32exbii 1496 . . 3 (∃𝑥(𝑥 = 𝑦 ∧ (𝜑𝜓)) ↔ ∃𝑥((𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜓)))
4 19.43 1519 . . 3 (∃𝑥((𝑥 = 𝑦𝜑) ∨ (𝑥 = 𝑦𝜓)) ↔ (∃𝑥(𝑥 = 𝑦𝜑) ∨ ∃𝑥(𝑥 = 𝑦𝜓)))
51, 3, 43bitri 195 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ (∃𝑥(𝑥 = 𝑦𝜑) ∨ ∃𝑥(𝑥 = 𝑦𝜓)))
6 sb5 1767 . . 3 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
7 sb5 1767 . . 3 ([𝑦 / 𝑥]𝜓 ↔ ∃𝑥(𝑥 = 𝑦𝜓))
86, 7orbi12i 681 . 2 (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ (∃𝑥(𝑥 = 𝑦𝜑) ∨ ∃𝑥(𝑥 = 𝑦𝜓)))
95, 8bitr4i 176 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98  wo 629  wex 1381  [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-sb 1646
This theorem is referenced by:  sbor  1828
  Copyright terms: Public domain W3C validator