Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbimv Structured version   GIF version

Theorem sbimv 1770
 Description: Intuitionistic proof of sbim 1824 where x and y are distinct. (Contributed by Jim Kingdon, 18-Jan-2018.)
Assertion
Ref Expression
sbimv ([y / x](φψ) ↔ ([y / x]φ → [y / x]ψ))
Distinct variable group:   x,y
Allowed substitution hints:   φ(x,y)   ψ(x,y)

Proof of Theorem sbimv
StepHypRef Expression
1 sbi1v 1768 . 2 ([y / x](φψ) → ([y / x]φ → [y / x]ψ))
2 sbi2v 1769 . 2 (([y / x]φ → [y / x]ψ) → [y / x](φψ))
31, 2impbii 117 1 ([y / x](φψ) ↔ ([y / x]φ → [y / x]ψ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98  [wsb 1642 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425 This theorem depends on definitions:  df-bi 110  df-sb 1643 This theorem is referenced by:  sblimv  1771  sbim  1824
 Copyright terms: Public domain W3C validator