ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbied Structured version   GIF version

Theorem sbied 1668
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 1671). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypotheses
Ref Expression
sbied.1 xφ
sbied.2 (φ → Ⅎxχ)
sbied.3 (φ → (x = y → (ψχ)))
Assertion
Ref Expression
sbied (φ → ([y / x]ψχ))

Proof of Theorem sbied
StepHypRef Expression
1 sbied.1 . . 3 xφ
21nfri 1409 . 2 (φxφ)
3 sbied.2 . . 3 (φ → Ⅎxχ)
43nfrd 1410 . 2 (φ → (χxχ))
5 sbied.3 . 2 (φ → (x = y → (ψχ)))
62, 4, 5sbiedh 1667 1 (φ → ([y / x]ψχ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wnf 1346  [wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643
This theorem is referenced by:  sbiedv  1669  dvelimdf  1889  cbvrald  9242
  Copyright terms: Public domain W3C validator