ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ12r Structured version   GIF version

Theorem sbequ12r 1637
Description: An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
sbequ12r (x = y → ([x / y]φφ))

Proof of Theorem sbequ12r
StepHypRef Expression
1 sbequ12 1636 . . 3 (y = x → (φ ↔ [x / y]φ))
21bicomd 129 . 2 (y = x → ([x / y]φφ))
32equcoms 1576 1 (x = y → ([x / y]φφ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  [wsb 1627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-4 1381  ax-17 1400  ax-i9 1404
This theorem depends on definitions:  df-bi 110  df-sb 1628
This theorem is referenced by:  abbi  2133  findes  4253  opeliunxp  4322  isarep1  4911
  Copyright terms: Public domain W3C validator