Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcth2 GIF version

Theorem sbcth2 2845
 Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
sbcth2.1 (𝑥𝐵𝜑)
Assertion
Ref Expression
sbcth2 (𝐴𝐵[𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem sbcth2
StepHypRef Expression
1 sbcth2.1 . . 3 (𝑥𝐵𝜑)
21rgen 2374 . 2 𝑥𝐵 𝜑
3 rspsbc 2840 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
42, 3mpi 15 1 (𝐴𝐵[𝐴 / 𝑥]𝜑)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1393  ∀wral 2306  [wsbc 2764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-sbc 2765 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator